Molecular bases of odor discrimination: Reconstitution of olfactory receptors that recognize overlapping sets of odorants.

نویسندگان

  • K Kajiya
  • K Inaki
  • M Tanaka
  • T Haga
  • H Kataoka
  • K Touhara
چکیده

The vertebrate olfactory system discriminates a wide variety of odorants by relaying coded information from olfactory sensory neurons in the olfactory epithelium to olfactory cortical areas of the brain. Recent studies have shown that the first step in odor discrimination is mediated by approximately 1000 distinct olfactory receptors, which comprise the largest family of G-protein-coupled receptors. In the present study, we used Ca(2+) imaging and single-cell reverse transcription-PCR techniques to identify mouse olfactory neurons responding to an odorant and subsequently to clone a receptor gene from the responsive cell. The functionally cloned receptors were expressed in heterologous systems, demonstrating that structurally related olfactory receptors recognized overlapping sets of odorants with distinct affinities and specificities. Our results provide direct evidence for the existence of a receptor code in which the identities of different odorants are specified by distinct combinations of odorant receptors that possess unique molecular receptive ranges. We further demonstrate that the receptor code for an odorant changes with odorant concentration. Finally, we show that odorant receptors in human embryonic kidney 293 cells couple to stimulatory G-proteins such as Galphaolf, resulting in odorant-dependent increases in cAMP. Odor discrimination is thus determined by differences in the receptive ranges of the odorant receptors that together encode specific odorant molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site.

The olfactory receptor (OR) superfamily provides a basis for the remarkable ability to recognize and discriminate a large number of odorants. In mice, the superfamily includes approximately 1000 members, and they recognize overlapping sets of odorants with distinct affinities and specificities. To address the molecular basis of odor discrimination by the mammalian OR superfamily, we performed f...

متن کامل

Learned Odor Discrimination in Drosophila without Combinatorial Odor Maps in the Antennal Lobe

A unifying feature of mammalian and insect olfactory systems is that olfactory sensory neurons (OSNs) expressing the same unique odorant-receptor gene converge onto the same glomeruli in the brain [1-7]. Most odorants activate a combination of receptors and thus distinct patterns of glomeruli, forming a proposed combinatorial spatial code that could support discrimination between a large number...

متن کامل

Olfactory discrimination ability of Asian elephants (Elephas maximus) for structurally related odorants.

Using a food-rewarded two-choice instrumental conditioning paradigm, we assessed the ability of Asian elephants, Elephas maximus, to discriminate between 2 sets of structurally related odorants. We found that the animals successfully discriminated between all 12 odor pairs involving members of homologous series of aliphatic 1-alcohols, n-aldehydes, 2-ketones, and n-carboxylic acids even when th...

متن کامل

Odorant receptor specificities and receptor combinatorials: implications for olfactory coding.

The perception and discrimination of thousands of different odorants by the vertebrate olfactory system results from the activation of specific olfactory neurons within the olfactory epithelium of the nose (reviewed in Buck, 2000; Firestein, 2001). Activity from these cells is then interpreted by the brain to discern the molecular identity of a given odorant stimulus. How is this process of mol...

متن کامل

Concentration and membrane fluidity dependence of odor discrimination in the turtle olfactory system.

In the present study, we examined the concentration dependence of odor discrimination in turtle olfactory bulbar responses using the cross-adaptation technique. In the odorant pairs with diverse molecular structures, the degree of discrimination was unchanged or only slightly decreased with an increase in odorant concentrations, suggesting that odorants are well discriminated even at high conce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 16  شماره 

صفحات  -

تاریخ انتشار 2001